Quasi-coherent sheaves on Proj (Har II5)

Let S be a graded ring. A <u>graded S-module</u> is an S-module M with a decomposition

$$M = \bigoplus_{d \in \mathbb{Z}} M_d$$

such that $S_d \cdot M_e \subseteq M_{d+e}$.

The twisted module M(n) is M w/grading shifted byn. i.e. The dth graded component of <math>M(n) is

$$M(n)_d := M_{d+n}$$

Morphisms in the category of graded S-modules are degree-preserving S-module homomorphisms.

Given a graded S-module M, we can construct a sheaf M on Proj S by giving the sections on distinguished opens:

For
$$F \in S_+$$
 homogeneous, define
 $\widetilde{M}(D_+(F)) = M_{(F)} := (M_F)_0 = \begin{cases} \frac{m}{F^n} & | \deg F^n = d \\ F^n & | \deg F^n = d \end{cases}$, $m \in M_d \end{cases}$.
This is naturally an $S_{(F)} = \mathcal{O}_{Projs}(D_+(F)) - module$.
 \widetilde{M} is a sheaf w/ restriction maps localization, called the

sheaf associated to M on ProjS.

Properties of
$$\tilde{M}$$
:
Let $X = ProjS$, Ma graded S -module.
(1) If PeX , then $(\tilde{M})_P = M_{(P)} := (M_P)_S$
(2) If FeS_t homogeneous, $\tilde{M}|_{D_t(P)} \cong \tilde{M}_{(F)}$.
(3) \tilde{M} is a quasi-coherent O_X -module (by (2))
Question: If $M \mapsto \tilde{M}$ an equivalence of categories,
analogous to the affine case? No:
(5x: Let $S = k[\pi, y]$, $I = (\pi)$, $J = (\pi^2, \pi y)$ ideals of S
considered as S -modules, $w/$ standard grading.
 $a_{2,0}$
Then $I = O \oplus k(\pi^2, \pi y) \oplus ...$
 $J = O \oplus O \oplus k(\pi^2, \pi y) \oplus ...$
Let $F \in S_t$ be homogeneous. Set deg $F = d > O$.
Then if $G \in I_m$, $FG \in I_{m+d} = J_{m+d}$, twe get a natural isom

•

Induced by the inclusion $J \subseteq I$:

$$J_{(F)} \rightarrow I_{(F)}$$

$$\frac{H}{F^{n}} \longmapsto \frac{H}{F^{n}}$$

$$\frac{FG}{F^{n+1}} \leftarrow G$$

These maps are compatible w/ restriction, so this extends to on isomorphism $\tilde{T} \cong \tilde{J}$ even though $I \not\cong J$ as S-modules.

More generally, if M and N are graded S-modules with $M_{\geq d} \cong N_{\geq d}$ for some d, then $\widetilde{M} \cong \widetilde{N}$. (Use the same trick to get an isomorphism.)

We will see that this is also a necessary condition for $\widetilde{M} \cong \widetilde{N}$. i.e. we have an equivalence of Categories between quasi-cohevent sheaves on ProjS and graded S-modules up to equivalence, where M and N are equivalent if $M_{\geq d} \cong N_{\geq d}$ for some d.

First we need the following construction:

Def: let
$$X = ProjS$$
, $n \in \mathbb{R}$. Define the sheaf
 $O_X(n) := \widetilde{S(n)}$
 $(S(n)_A := S_{n+d})$

 $O_x(1)$ is called the <u>twisting sheaf</u>. If F is any sheaf of O_x -modules, define

$$\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(n).$$

Claim: If S is generated by S_1 as an S_0 -algebra (as in the poly.ring for example), then $O_X(n)$ is invertible (i.e. locally free of rank 1)

 $Pf: \bigcup_{F \in S_{i}} D_{+}(F) = \{P \in X \mid S_{i} \notin P \} = X, \text{ since if } S_{i} \subseteq P$ Thun $S_{+} \subseteq P$.

$$\mathcal{O}_{X}(n)(D_{+}(F)) = S(n)_{(F)}, \text{ an } S_{(F)} - module.$$

 $S(n)_{(F)}$ is the elts of degree h in S_F . So we get an isomorphism of $S_{(F)}$ -modules:

Note that if M is any graded S-module, we have

 $\tilde{M}(n) = \tilde{M} \otimes \mathcal{O}(n) = \tilde{M} \otimes \tilde{S}(n) = \tilde{M} \otimes \tilde{S}(n) = \tilde{M} \otimes \tilde{S}(n) = \tilde{M}(n)$. In particular:

$$O(n) \otimes O(m) = O(n+m)$$

If T is another graded ring also generated in degree $I_{,}$ and $\Psi: S \rightarrow T$ a graded homomorphism.

Let
$$U = \{ P \in Proj T | P \neq \Psi(S_{+}) \}$$
, an open set in $Proj T = Y$

Then \mathcal{C} induces a morphism $f: \mathcal{U} \rightarrow \operatorname{Proj} S$ and $P \longmapsto \mathcal{C}^{-1}(P)$

for M a graded S-module and N a graded T-module, just like in the affine case we have

$$f^{*}(\widetilde{M}) \cong (\widetilde{M} \otimes_{s} T)_{u}$$
 and $f_{*}(\widetilde{N}|_{u}) = \widetilde{N'}$.

In particular,

$$f^{*}(\mathcal{O}_{x}(n)) \stackrel{\simeq}{=} \mathcal{O}_{y}(n)|_{u} \text{ and } f_{*}(\mathcal{O}_{y}(n)|_{u}) \stackrel{\simeq}{=} (f_{*}\mathcal{O}_{u})(n).$$

$$\overbrace{T}_{S(n)} \stackrel{\uparrow}{T(n)}_{u \text{ (check!)}}$$

$$\overbrace{T \otimes_{S}S(n)}^{u \text{ (check!)}}$$

We know how to take a graded module and get a quasi-cohevent sheaf on Proj S.

Unlike in the affine case, we can't recover the module from a sheaf by taking global sections.

Ex: let
$$S = k(\pi_0, \dots, \pi_n)$$
, $X = Proj S = P_k^n$. Then $\mathcal{O}_x(-1) = \widetilde{S(-1)}$.

Let
$$U_i = D_+(\pi_i)$$
. Then $O_x(-i)(U_i) = S(-i)_{(\pi)} = \left\{ \frac{F}{\pi_i^{d+1}} \mid F \in S_d \right\}$.
These cover X, so we can get global sections

$$\Gamma(X, \mathcal{O}_{X}(-1)) = \left\{ (s_{i}) \in TTS(-1)_{(X_{i})} \middle| s_{i} = s_{j} \in S(-1)_{(X_{i})} \right\}$$

But
$$\frac{F}{\chi_{i}^{d+1}} = \frac{G}{\chi_{j}^{e+1}} \Longrightarrow \chi_{i}^{d+1} \Big| F$$
 and $\chi_{j}^{e+1} \Big| G \Longrightarrow F = G = O$.
 $degd$
 $degd$
 $dege$
So $\Gamma(X, O_{X}(-1)) = O \neq S(-1)$.

Note that for $O_x(n)$ with $n \ge 0$, we do have global sections: homogeneous polynomials of deg n, i.e. S_n .

More generally, we can construct a graded S-module from any sheaf by summing over every twist:

Def:
$$X = \operatorname{ProjS}$$
. Let \widehat{F} be a sheaf of \mathcal{O}_X -modules. The graded S-module associated to \widehat{F} is
$$\Gamma_*(\widehat{F}) = \bigoplus_{n \in \mathbb{Z}} \Gamma(X, \widehat{F}(n)).$$
If $s \in S_A$ and $t \in \Gamma(X, \widehat{F}(n))$, define

$$st := s \otimes t \in \Gamma(X, \mathcal{F}(n) \otimes \mathcal{O}_{X}(d)) = \Gamma(\mathcal{F}(n+d))$$

For Sa polynomial ring, this construction recovers S from The structure sheaf:

Prop: A a ring,
$$S = A[x_0, ..., x_r]$$
, $r \ge 1$ and $X = Proj S = P_A^r$.
Then $\Gamma_*(\mathcal{O}_X) \cong S$.

- Pf: Similar to example above. Cover X with $D_{+}(x_{i})$ to compute global sections. (See Har for details.) \Box
 - Note: For S an arbitrary graded ring, we don't necessarily have $\Gamma_*(O_X) = S$.

If F is quasi-coherent, this construction gives us a one-sided inverse for \sim . Precidely:

Theorem: S a graded ring, finitely generated in S,
as an So-algebra, i.e.
$$S = \frac{So[\pi_1, \dots, \pi_n]}{I}$$
, $X = \operatorname{Proj} S$,
 \mathcal{F} quasi-coherent on X. Then there's an isomorphism
 $\beta \colon \widetilde{\Gamma_*(\mathcal{F})} \longrightarrow \mathcal{F}$.

As we saw, many modules may give the same sheaf, but $\Gamma_*(\mathcal{F})$ is the "biggest". Up to equivalence of modules, this gives a one-to-one correspondence

To prove the theorem, we need the following useful lemma, which is a generalization of one we had on Spec, and The proof is very similar, so we leave it out.

Lemma: X a scheme, L an invertible sheaf,
$$f \in \Gamma(X,L)$$
,
 $X_f = \{x \in X \mid f_x \notin m_x f_x \} \subseteq X$,
 $\max^{(1)} I \text{ ideal}$

and $\widehat{\mathcal{F}}$ quasi-coherent. a.) If X is quasi-compact, $s \in \Gamma(X, \widehat{\mathcal{F}})$ s.t. $s|_{X_{f}} = 0$, then $\widehat{\mathcal{F}}^{n}s = 0$ in $\Gamma(X, \widehat{\mathcal{F}} \otimes \widehat{\mathcal{L}}^{\otimes n})$ for some n > 0.

b.) If
$$X = \bigcup U_i$$
, U_i open affine, $\int |_{U_i}$ free and $U_i \cap U_j$
quasi-compact, then given $t \in \Gamma(X_f, \overline{f})$, there is $n > 0$,
s.t. $f^n t \in \Gamma(X_f, \overline{f} \otimes \underline{f}^{\otimes n})$ extends to a global section
of $\overline{f} \otimes \underline{f}^{\otimes n}$.

(The hypotheses of a.) and b.) are satisfied if X is Noetherian or if X is quasi-compact and separated.) Pf of Theorem: First we define $\beta: \overline{\Gamma_*(f)} \to \overline{F}$, by defining it on $D_+(f)$. Since $D_+(f)$ is affine and The sheaves are quasi-coh., it suffices to give module maps

$$\widetilde{\Gamma_{*}(\mathcal{F})}$$
 $(\mathcal{D}_{+}(f)) \longrightarrow \mathcal{F}(\mathcal{D}_{+}(f)).$

That is, we want to know the image of $\frac{m}{f^d}$, where $m \in \Gamma(X, F(d))$.

$$\frac{1}{f^{d}} \text{ is a section of } \mathcal{O}_{x}(-d) \text{ over } D_{+}(f), \text{ so set}$$

$$\beta\left(\frac{m}{f^{d}}\right) = m \otimes \frac{1}{f^{d}} \in \Gamma(D_{+}(f), f(d) \otimes \mathcal{O}_{x}(-d)).$$

$$\overset{"}{f}$$

To show β is an isomorphism, first note that we can find $f_0, \dots, f_r \in S_r$, s.t. X is covered by $D_+(f_i)$, and set $J = \mathcal{O}_X(i)$. J is free on each $D_+(f_i)$, Thun we apply the lemma and get $\Gamma_*(\mathcal{F})_{(f)} \cong \mathcal{F}(D_+(f))$ (Exercise (a.) injectivity b) surj.

Since F is quasi-coherent, this implies the restrictions of the sheaves to $D_+(f)$ are isomorphic. D

This has the following nice application:

a.) If Y in
$$\mathbb{P}_{A}^{r \in X}$$
 closed subscheme, then there's a homogeneous ideal $I \subseteq S = A[x_0, ..., x_r]$ s.t. Y is The closed subsch. determined by $\operatorname{Proj}({}^{s_{/_{I}}}) \to X$.

Pf a.) Let $d_{y} \subseteq O_{x}$ the ideal sheaf of Y. First note that tensoring by $O_{x}(n)$ is exact since it is free on some open cover, and free modules are flat. In particular,

$$l_{y}(d) \in O_{x}(d).$$

Taking global sections is left exact. Thus $\Gamma(X, l_Y(d)) \subseteq \Gamma(X, O_X(d))$ $\implies \Gamma_*(l_Y) \subseteq \Gamma_*(O_X) = S \quad (by prop above).$

Thus $I = \Gamma_*(J_Y)$ is a homogeneous ideal of S_j which determines some closed subscheme of X whose ideal sheaf is \widetilde{T} (do you see why?)

By The Theorem, $\hat{T} \cong l_{\gamma}$, so γ is the subscheme determined by I.

b.) If Y is a closed subsch. of
$$\mathbb{P}_{A}^{n}$$
, then by a.),
 $Y \cong \operatorname{Proj}(S/_{I})$, for some $I \subseteq S_{+}$ so that $(S/_{I})_{o} = A$.
(see ex3.(2)
Conversely $S = A^{[\pi_{o}, \dots, \pi_{n}]}/_{I}$, so Y is a closed
subsch. of \mathbb{P}_{A}^{n} . \Box